Home
Class 10
MATHS
Prove (sin^3A+cos^3A)/(sinA+cosA)=1-sinA...

Prove `(sin^3A+cos^3A)/(sinA+cosA)=1-sinAcosA`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sinA+cosA)^2+(sinA-cosA)^2=

Prove the following identity: (sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2

Prove that (1+sinA-cosA)^2+(1-sinA+cosA)^2=4(1-sinA.cosA)

If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/(sqrt(1+tan^(2)A))-2tanA cotA. is always equal to

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

Prove that: (1+sinA-cosA)/(1+sinA+cosA)=tan(A/2)

Prove that (sinA+cosA)^3 = 3(sinA+cosA) - 2 (sin^3A+cos^3A)

Prove that a) (sin3A + sinA)sinA+(cos3A-cosA) cosA=0 b) cos20^(@)cos40^(@)cos80^(@)=1/8

Prove that (1+sin2A)/(cos2A)=(cosA+sinA)/(cosA-sinA)=tan((pi)/(4)+A)

Prove: (1+cosA)/(sinA)=(sinA)/(1-cosA)