Home
Class 10
MATHS
In triangle "ABC" ,if (sin3B)/(sin B)=((...

In triangle "ABC" ,if `(sin3B)/(sin B)=((a^(2)-c^(2))/(2ac))^(2)" ,then "a^(2),b^(2),c^(2)` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In any triangle A B C , prove that: ("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)

In sub - part (i) to (x) choose the correct option and in sub - part (xi) to (xy), answer the questions as intructed . In any triangle ABC, (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))"sin"2C= ________

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

For triangle ABC, show that: sin((A+B)/(2))-cos(C)/(2)=0

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))