Home
Class 11
MATHS
Prove that : (1-tantheta)^(2)+(1-cotthet...

Prove that : `(1-tantheta)^(2)+(1-cottheta)^(2)=(sectheta-cosectheta)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove that : (sectheta-tantheta)^(2)=(1-sintheta)/(1+sintheta)

Prove that : sintheta(1+tantheta)+costheta(1+cottheta)=cosectheta+sectheta

Prove that : (tan theta)/(sectheta+1)-(tantheta)/(1-sectheta)=2cosec theta

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacos e ctheta

Find the value of ((1-tantheta)/(1-cottheta))^2

Prove that : (tantheta/(1-tantheta))-(cottheta/(1-cottheta))=(costheta+sintheta)/(costheta-sintheta)

i) Prove that: (cot^(2)A)/(1-"cosec"A)^(2)=(1+sinA)/(1-sinA) ii) Prove that: (costheta)/(1-tantheta)+(sintheta)/(1-cottheta)=sintheta+costheta

Solve: tantheta+sectheta=2costheta