Home
Class 12
MATHS
If [ [ a , a^2 , 1 + a^2 ] , [ b , b^2 ...

If ` [ [ a , a^2 , 1 + a^2 ] , [ b , b^2 , 1 + b^2 ] , [ c , c^2 , 1 + c^2 ] ]` = 0 , then show that `[ [ a , a^2 , 1 ] , [ b , b^2 , 1 ] , [ c , c^2 , 1] ]` = 0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Show that a-b is a factor of |[1,a,a^(2)],[1,b,b^(2)],[1,c,c^(2)]|

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |[a,a^(2),1+a^(3)],[b,b^(2),1+b^(3)],[c,c^(2),1+c^(3)]|=0" and "|[a,a^(2),1],[b,b^(2),1],[c,c^(2),1]|!=0 then show that abc =-1

If a!=b!=c such that |[a^3-1,b^3-1,c^3-1] , [a,b,c] , [a^2,b^2,c^2]|=0 then

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)