Home
Class 12
MATHS
Find the general solution : int ( dx/...

Find the general solution :

`int ( dx/x ) = int ( ( 1 - v ) / ( 1 + v ) )dv`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int ( (2v ) / ( 1 - v^2 ) ) dv

Evaluate : 1/3 int ( 1 + 2v ) / ( v^2 + v + 1 )dv

int (1-v) (dx)) / (1 + v + v ^ (2))

int e ^ (- (v) / (u)) dv

Evaluate : int (( 2v ) / (v^2 -1) ) dv

Evaluate int ((1 - x)/(1 + x)) dx

Evaluate : int( 1 / ( 2v^2 - 1 ) ) dv

(V + 1) / (V (2V + 1)) dv = - (1) / (x) dx

If u and v are two functions of x then prove that : int uv dx = u int v dx - int [ (du)/(dx) int v dx ] dx Hence, evaluate int x e^(x) dx

Evaluate : int(dx)/(x(x^(7)+1))