Home
Class 12
MATHS
If &nbspxsqrt( 1 + y ) + ysqrt( 1 + x ...

If  `xsqrt( 1 + y ) + ysqrt( 1 + x ) = 0` , then prove that `dy/dx = -1/( 1 + x )^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If quad sqrt(1+y)+y sqrt(1+x)0,-1

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=