Home
Class 10
MATHS
Show that : (1)/(3+sqrt(7))+(1)/(sqrt(...

Show that :
`(1)/(3+sqrt(7))+(1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+1)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

( Show that: )/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(2sqrt(7)+sqrt(5))-(1)/(2sqrt(5)+sqrt(7)) simplify

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

(1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))