Home
Class 12
MATHS
If E(x) =2 and E(z)=4 then E(z-x) =?...

If `E(x) =2` and `E(z)=4` then `E(z-x)` =?

Promotional Banner

Similar Questions

Explore conceptually related problems

If z!=0 be a complex number and a rg(z)=pi/4, then R e(z)=I m(z)on l y R e(z)=I m(z)>0 R e(z^2)=I m(z^2) (d) None of these

If f(1)=2, f\'(x)=f(x) and h(x)=fof(x) then h'\(1) is equal to (A) 4e (B) 2e^2 (C) 4e^2 (D) e^2

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If vec(E)=2y hat(i)+2x hat(j) , then find V (x, y, z)

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

Due to a charge inside a cube the electric field is E_(x)=600 x^(1//2), E_(y)=0, E_(z)=0 . The charge inside the cube is (approximately):

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Let A and B be two sets such that n(A)=3\ a n d\ n(B)=2. if\ (x ,1),\ (y ,2),\ (z ,1)a r e\ in\ AxxB ,\ find \ A\ a n d\ B ,\ w h e r e\ x , y , z are distinct elements.

If V=x^(2)y+y^(2)z then find vec(E) at (x, y, z)

If z lies on the curve a r g(z+1)=pi/4 , then the minimum value of |z-omega|+|z+omega|,w h e romega=e^(i(2pi)/3) , is