Home
Class 12
MATHS
16.Cauchy's dispersion formula is -... ...

16.Cauchy's dispersion formula is -...
`(a) mu=A+B lambda^(-2)+C lambda^(-4)`
`(b) mu=A+B lambda^(2)+C lambda^(-4) `
`(c) mu=A+B lambda^(2)+C lambda^(-2)`
`(d) mu=A+B lambda^(2)+C lambda^(4) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

According of Kohlrausch law, the limiting value of molar conductivity of an electrolyte A_(2)B is (a) lambda^(oo) ._(A^(+)) + lambda^(oo) ._((B^(-)) (b) lambda^(oo) ._(A^(+)) - lambda^(oo) ._(B^(-)) (c) 2lambda^(oo) ._(A^(+)) +(1)/(2)lambda^(oo) ._((B^(-)) (d) 2lambda^(oo) ._(A^(+)) + lambda^(oo) ._(B^(-))

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If y=2 is the directrix and (0,1) is the vertex of the parabola x^2+lambday+mu=0 , then (a) lambda=4 (b) mu=8 (c) lambda=-8 (d) mu=4

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

The values of lambda for which the function f(x)=lambdax^3-2lambdax^2+(lambda+1)x+3lambda is increasing through out number line (a) lambda in (-3,3) (b) lambda in (-3,0) (c) lambda in (0,3) (d) lambda in (1,3)

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=