Home
Class 12
MATHS
If x=2^(sin^(2)theta), y=2^(cos^(2)theta...

If `x=2^(sin^(2)theta), y=2^(cos^(2)theta)` for all real values of `theta`, then

A

`x+y =1`

B

`x+yge2`

C

`x+ y le 2 sqrt(2)`

D

`x+y ge 2sqrt(2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=sin^(2)theta+cos^(4)theta, then for all real values of theta

If x=cos^(2)theta+sin^(4)theta then for all real values of theta

The maximum value of 1+sin((pi)/(4) +theta) +2cos((pi)/(4) - theta) for all real values of theta is :

If x= 2sin^(2)theta and y= 2cos^(2)theta+ 1 then the value of x+ y is

The value of the determinant |{:("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2)(theta)/(2),"cos"^(2)(theta)/(2)):}| for all values of theta , is

The value of the determinants |("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2) (theta)/(2),"cos"^(2) (theta)/(2))| for all values of theta , is :

If A= cos^(4)theta+sin^(2)theta , then for all values of theta :