Home
Class 12
MATHS
If tan theta = a/b then the value of (b ...

If tan `theta = a/b` then the value of `(b sin theta - a cos theta)/(b sin theta + a cos theta)` is

A

1

B

`(a^2-b^2)/(a^2+b^2)`

C

`(b^2-a^2)/(b^2+a^2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. We know that \( \tan \theta = \frac{a}{b} \). From the definition of tangent, we can express this in terms of sine and cosine: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Thus, we have: \[ \frac{\sin \theta}{\cos \theta} = \frac{a}{b} \] From this, we can express \( \sin \theta \) and \( \cos \theta \): \[ \sin \theta = \frac{a}{\sqrt{a^2 + b^2}} \quad \text{and} \quad \cos \theta = \frac{b}{\sqrt{a^2 + b^2}} \] Now, we need to find the value of: \[ \frac{b \sin \theta - a \cos \theta}{b \sin \theta + a \cos \theta} \] Substituting the expressions for \( \sin \theta \) and \( \cos \theta \): \[ b \sin \theta = b \cdot \frac{a}{\sqrt{a^2 + b^2}} = \frac{ab}{\sqrt{a^2 + b^2}} \] \[ a \cos \theta = a \cdot \frac{b}{\sqrt{a^2 + b^2}} = \frac{ab}{\sqrt{a^2 + b^2}} \] Now, substituting these into our expression: 1. **Numerator**: \[ b \sin \theta - a \cos \theta = \frac{ab}{\sqrt{a^2 + b^2}} - \frac{ab}{\sqrt{a^2 + b^2}} = 0 \] 2. **Denominator**: \[ b \sin \theta + a \cos \theta = \frac{ab}{\sqrt{a^2 + b^2}} + \frac{ab}{\sqrt{a^2 + b^2}} = \frac{2ab}{\sqrt{a^2 + b^2}} \] Now substituting back into our expression: \[ \frac{0}{\frac{2ab}{\sqrt{a^2 + b^2}}} = 0 \] Thus, the final value is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

If tan theta=(a)/(b) , find the value of (a sin theta-b cos theta)/(asin theta+b cos theta)

If tan theta=(a)/(b) then find the value of (cos theta+sin theta)/(cos theta-sin theta)

If b tan theta = a find the value of (cos theta + sin theta )/( cos theta - sin theta)

If tan theta=a/b then (a sin theta-b cos theta)/(a sin theta+bcos theta)=

The extreme values of a sin theta-b cos theta

If sqrt(3)sin theta=cos theta, find the value of (sin theta tan theta(1+cot theta))/(sin theta+cos theta)

If 3tan theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If a tan theta = b, then a cos 2 theta+ b sin 2 theta =

If tan theta=(4)/(5), find the value of (cos theta-sin theta)/(cos theta+sin theta)