Home
Class 12
MATHS
If sin theta = 4/5, then value of cos 2 ...

If sin `theta = 4/5`, then value of cos `2 theta` is

A

`8//5`

B

`3//5`

C

`7//35`

D

`-7//25`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of cos(2θ) given that sin(θ) = 4/5, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the given value:** We know that sin(θ) = 4/5. 2. **Calculate sin²(θ):** \[ \sin^2(θ) = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] 3. **Use the Pythagorean identity to find cos²(θ):** We know that: \[ \sin^2(θ) + \cos^2(θ) = 1 \] Substituting the value of sin²(θ): \[ \frac{16}{25} + \cos^2(θ) = 1 \] Rearranging gives: \[ \cos^2(θ) = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] 4. **Calculate cos(2θ) using the double angle formula:** The formula for cos(2θ) is: \[ \cos(2θ) = \cos^2(θ) - \sin^2(θ) \] Substituting the values we found: \[ \cos(2θ) = \frac{9}{25} - \frac{16}{25} \] Simplifying this gives: \[ \cos(2θ) = \frac{9 - 16}{25} = \frac{-7}{25} \] 5. **Final answer:** Therefore, the value of cos(2θ) is: \[ \cos(2θ) = -\frac{7}{25} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta + sin^2 theta =1 , then the value of cos^2 theta + cos^ 4 theta is

If tan theta=(4)/(5), find the value of (cos theta-sin theta)/(cos theta+sin theta)

If 3 sin theta + 4 cos theta =5 , then value of sin theta is

If 3tan theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If 5 cos theta -12 sin theta =0 , the value of (2 sin theta +cos theta )/(cos theta - sin theta ) यदि 5 cos theta -12 sin theta =0 , है, तो (2 sin theta +cos theta )/(cos theta - sin theta ) का मान ज्ञात करें |

If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

If 3cot theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If 3 cot theta = 4 , then the value of (5 sin theta+ 3 cos theta)/(5 sin theta - 3 cos theta) is

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is