Home
Class 12
MATHS
If a, b and c are any positive real numb...

If a, b and c are any positive real number then the value of `sqrt(a^(-1)b).sqrt(b^(-1)c).sqrt(c^(-1)a)` is

A

`1//2`

B

`0`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sqrt{a^{-1}b} \cdot \sqrt{b^{-1}c} \cdot \sqrt{c^{-1}a} \] ### Step-by-step Solution: 1. **Rewrite the Expression:** We can rewrite the expression using the property of square roots: \[ \sqrt{a^{-1}b} = (a^{-1}b)^{1/2} \] Therefore, the entire expression becomes: \[ (a^{-1}b)^{1/2} \cdot (b^{-1}c)^{1/2} \cdot (c^{-1}a)^{1/2} \] 2. **Combine the Square Roots:** We can combine the square roots: \[ = \sqrt{(a^{-1}b)(b^{-1}c)(c^{-1}a)} \] 3. **Simplify the Inside of the Square Root:** Now, we simplify the product inside the square root: \[ (a^{-1}b)(b^{-1}c)(c^{-1}a) = a^{-1}b \cdot b^{-1}c \cdot c^{-1}a \] When we multiply these, we can rearrange the terms: \[ = \frac{b}{a} \cdot \frac{c}{b} \cdot \frac{a}{c} \] 4. **Cancel Out Terms:** Notice that in the multiplication: \[ = \frac{b}{a} \cdot \frac{c}{b} \cdot \frac{a}{c} = \frac{b \cdot c \cdot a}{a \cdot b \cdot c} = 1 \] 5. **Final Calculation:** Therefore, we have: \[ \sqrt{(a^{-1}b)(b^{-1}c)(c^{-1}a)} = \sqrt{1} = 1 \] ### Conclusion: Thus, the value of the expression \(\sqrt{a^{-1}b} \cdot \sqrt{b^{-1}c} \cdot \sqrt{c^{-1}a}\) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers,then sqrt(a^(-1)b)x sqrt(b^(-1)c)x sqrt(c^(-1)a) is equal to: 1 (b) abc(c)sqrt(abc)(d)(1)/(abc)

If a,b,c are positive real numbers; then the value of x that minimizes sqrt(a^(2)+x^(2))+sqrt((b-x)^(2)+c^(2))

If a,b,c be positive real numbers and the value of theta=tan^(-1)sqrt((a(a+b+c))/(bc))+tan^(-1)sqrt((b(a+b+c))/(ca))+tan^(-1)sqrt((c(a+b+a))/((ab))) then tan theta is equal to

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

If a>b>0 are two real numbers, then the value of sqrt(a b+(a-b)sqrt(a b+(a-b)sqrt(a b+(a-b)sqrt(a b+.....)))) is

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)