Home
Class 12
MATHS
cos theta sqrt(sec^2 theta-1) is equal t...

`cos theta sqrt(sec^2 theta-1)` is equal to

A

sin `theta`

B

cot `theta`

C

sec `theta` s

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos \theta \sqrt{\sec^2 \theta - 1} \), we can follow these steps: ### Step 1: Understand the identity We know that \( \sec^2 \theta = 1 + \tan^2 \theta \). This is a fundamental trigonometric identity. ### Step 2: Substitute the identity Using the identity from Step 1, we can rewrite the expression inside the square root: \[ \sec^2 \theta - 1 = \tan^2 \theta \] ### Step 3: Substitute back into the expression Now, substitute \( \tan^2 \theta \) back into the original expression: \[ \sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} \] ### Step 4: Simplify the square root The square root of \( \tan^2 \theta \) is \( |\tan \theta| \). However, since we are dealing with angles in the context of trigonometric functions, we can simplify this to: \[ \sqrt{\tan^2 \theta} = \tan \theta \] ### Step 5: Substitute back into the expression Now, substitute \( \tan \theta \) back into the expression: \[ \cos \theta \cdot \tan \theta \] ### Step 6: Use the definition of tangent Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Therefore, we can rewrite the expression: \[ \cos \theta \cdot \tan \theta = \cos \theta \cdot \frac{\sin \theta}{\cos \theta} \] ### Step 7: Simplify the expression The \( \cos \theta \) in the numerator and denominator cancels out: \[ \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = \sin \theta \] ### Final Answer Thus, the expression \( \cos \theta \sqrt{\sec^2 \theta - 1} \) simplifies to: \[ \sin \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta = 1/sqrt7 " then" ((cosec^(2) theta -sec^(2) theta))/((cosec^(2)theta + sec^(2) theta)) is equal to

The expression,(1+sec2 theta)(1+sec4 theta)(1+sec8 theta) is equal to -

If cos theta=5/13 , then the value of tan^2 theta+ sec^2 theta is equal to: यदि cos theta=5/13 , तो tan^2 theta+ sec^2 theta का मान ज्ञात करें :

If cos theta + sec theta = 2 then cos^(n)theta+ sec^(n)theta is equal to ___

If (cos ^(2) theta - 1) ( 2 sec ^(2) theta) + sec ^(2) theta + 2 tan ^(2) theta = 2 , 0 ^(@) lt theta lt theta lt 90^(@) , then (( "cosec" theta + cos theta))/(( "cosec theta - cos theta)) is equal to :

(tan theta)/(sec theta-1)+(tan theta)/(sec theta+1) is equal to 2tan theta(b)2sec theta(c)2cos ec theta(d)2tan theta sec theta

(1+sec 2 theta)*sqrt(sec^(2) theta-1)= A) 2 sec theta B) sec 2 theta C) 2 tan theta D) tan 2 theta