Home
Class 12
MATHS
The value of ((0.7)^0 - (0.1)^(-1))/((3/...

The value of `((0.7)^0 - (0.1)^(-1))/((3/8)^(-1) (3/2)^(3) +(-1/3)^(-1))` is

A

`-3/2`

B

`2/3`

C

`3`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{(0.7)^0 - (0.1)^{-1}}{(3/8)^{-1} \cdot (3/2)^{3} + (-1/3)^{-1}}, \] we will break it down step by step. ### Step 1: Simplify the numerator 1. **Calculate \((0.7)^0\)**: \[ (0.7)^0 = 1 \quad \text{(Any non-zero number raised to the power of 0 is 1)} \] 2. **Calculate \((0.1)^{-1}\)**: \[ (0.1)^{-1} = \frac{1}{0.1} = 10 \quad \text{(Negative exponent means reciprocal)} \] 3. **Combine the results**: \[ (0.7)^0 - (0.1)^{-1} = 1 - 10 = -9 \] ### Step 2: Simplify the denominator 1. **Calculate \((3/8)^{-1}\)**: \[ (3/8)^{-1} = \frac{8}{3} \quad \text{(Negative exponent means reciprocal)} \] 2. **Calculate \((3/2)^{3}\)**: \[ (3/2)^{3} = \frac{3^3}{2^3} = \frac{27}{8} \] 3. **Combine the results**: \[ (3/8)^{-1} \cdot (3/2)^{3} = \frac{8}{3} \cdot \frac{27}{8} = \frac{27}{3} = 9 \] 4. **Calculate \((-1/3)^{-1}\)**: \[ (-1/3)^{-1} = -3 \quad \text{(Negative exponent means reciprocal)} \] 5. **Combine the results in the denominator**: \[ 9 + (-3) = 9 - 3 = 6 \] ### Step 3: Combine the numerator and denominator Now we can substitute back into the original expression: \[ \frac{-9}{6} \] ### Step 4: Simplify the fraction 1. **Simplify \(\frac{-9}{6}\)**: \[ \frac{-9}{6} = \frac{-3}{2} \quad \text{(Dividing both numerator and denominator by 3)} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-\frac{3}{2}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: ((0. 6)^0- (0. 1)^(-1))/((3/8)^(-1) (3/2)^3+ (-1/3)^(-1))= -3/2

The value of ((0.6)^(0)-(0.1)^(1))/(((3)/(2^(3)))^(-1)((3)/(2))^(3)+(-(1)/(3))^(-1))

The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3)/(2))^(3)+(-(1)/(3))^(-1)) is

What is the value of ((0.3)^(3)-(0.1)^(3))/([(0.3)^(2)+(0.1)^(2)+(0.3)xx (0.1)]) ?

The value of (0.16)^("log"_(0.25)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

The value of (5^0+2^1)/(3^2+8^0)

Value of (0.36)^(log_(0.25))((1)/(3)+(1)/(3^(2))+(1)/(3^(3))+....oo)=