Home
Class 12
MATHS
If p=x+1/x then the value of p-1/p will ...

If `p=x+1/x` then the value of `p-1/p` will be

A

3x

B

`3/x`

C

`(x^4+x^2 +1)/(x^3+x)`

D

`(x^4+3x^2 + 1)/(x^3+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p - \frac{1}{p} \) given that \( p = x + \frac{1}{x} \). ### Step-by-step Solution: 1. **Substituting the value of \( p \)**: \[ p = x + \frac{1}{x} \] 2. **Finding \( \frac{1}{p} \)**: To find \( \frac{1}{p} \), we take the reciprocal of \( p \): \[ \frac{1}{p} = \frac{1}{x + \frac{1}{x}} = \frac{x}{x^2 + 1} \] (This is derived by multiplying numerator and denominator by \( x \) to eliminate the fraction in the denominator.) 3. **Calculating \( p - \frac{1}{p} \)**: Now we need to compute \( p - \frac{1}{p} \): \[ p - \frac{1}{p} = \left( x + \frac{1}{x} \right) - \frac{x}{x^2 + 1} \] 4. **Finding a common denominator**: The common denominator for the terms is \( x(x^2 + 1) \): \[ p - \frac{1}{p} = \frac{(x + \frac{1}{x})(x^2 + 1) - x}{x(x^2 + 1)} \] 5. **Expanding the numerator**: \[ = \frac{(x^3 + x) + (1) - x}{x(x^2 + 1)} \] Simplifying the numerator: \[ = \frac{x^3 + 1}{x(x^2 + 1)} \] 6. **Final expression**: Thus, we have: \[ p - \frac{1}{p} = \frac{x^3 + 1}{x(x^2 + 1)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p(x)=x^(3)-1 ,then find the value of p(-1)+p(1)

If p(x)=x^2-1 then find the values of p(x) when x=1,-1

If p(4)=3x^(2)+2x-2, then the value of p(3)-p(-1)+p((1)/(2)) is

If p(x) = x+5 then find the value of p(x) + P(-x)

If P(x) = x^3 - 1 , then find the value of P(1) + P( -1 )

If  p(x ) = ( x -1 ) ( x + 1 ) , then the value of p( 0 ) + p (1)

A cubic polynomial p(x) is such that p(1)=1,p(2)=2,p(3)=3 and p(4)=5 then the value of p(6) is