Home
Class 12
MATHS
If log5 [log2 (log3 x)]=0 then the value...

If `log_5 [log_2 (log_3 x)]=0` then the value of x is

A

3

B

6

C

9

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If 3log_(2)x+log_(2)27=3 then the value of x is

If log_2log_3log_4log_5A=x, then the value of A is (a) 120^x (b) 2^(60 x) (c) 2^(3^(4^(5^x))) (d) 5^(4^(3^(2^x)))

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If "log"_(5)("log"_(5)("log"_(2)x)) =0 then the value of x, is

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

If (log_(5) K) (log_(3) 5) (log_(k) x ) = k , then the value of x if k = 3 is