Home
Class 12
MATHS
If x^(y)=e^(x-y)prove that(dy)/(dx)=(log...

If `x^(y)=e^(x-y)`prove that`(dy)/(dx)`=`(log x)/((1+log x)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

Solve (dy)/(dx)+(y)/(x)=log x.

If y=x^x then prove that is (dy)/(dx)=x^(x)log_(e)(ex) .

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y=x^((logx)^log(logx)) then (dy)/(dx)=