Home
Class 12
MATHS
Evaluate : | [ veca . veca , veca . v...

Evaluate :
`| [ veca . veca , veca . vecb ] , [ vecb . veca , vecb . vecb ] |`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that | vecaxxvecb | ^ 2 = det ((veca.veca, veca.vecb), (veca.vecb, vecb.vecb))

If vec A . vecB = vecA*vecB , find |vecA - vecB|

l veca . m vecb = lm(veca . vecb) and veca . vecb = 0 then veca and vecb are perpendicular if veca and vecb are not null vector

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are