Home
Class 12
MATHS
y=sec x+tan x. Prove that (d^(2)y)/(dx^(...

y=sec x+tan x. Prove that `(d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan X+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

If y=tan x+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

if y = tan x + sec x, prove that (d ^ (2) y) / (dx ^ (2)) = (cos x) / ((1-sin x) ^ (2))

If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

y=5cos x-3sin x prove that (d^(2)y)/(dx^(2))+y=0

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)cos^(2)x=0

If y=A cos x+B sin x then prove that (d^(2)y)/(dx^(2))+y=0

If x=a(theta+sin theta),y=a(1+cos theta), prove that (d^(2)y)/(dx^(2))=-(a)/(y^(2))

If cos x=y cos(a+x), Prove that (d^(2)y)/(dx^(2))=2sin a sec^(2)(a+x)tan(a+x)

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0