Home
Class 11
MATHS
If the line ax+by=2(a!=0) touches the ci...

If the line `ax+by=2(a!=0)` touches the circle `x^(2)+y^(2)-2x=3` and is normal to the circle `x^(2)+y^(2)-4y=6` then `a-b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line ax + by = 2 ; a, b!=0 , touches the circle x^2 +y^2-2x = 3 and is normal to the circle x^2 + y^2-4y = 6 , then the values of 'a' and 'b' are ?

If the line a x+b y=2 is a normal to the circle x^2+y^2-4x-4y=0 and a tangent to the circle x^2+y^2=1 , then

If the line a x+b y=2 is a normal to the circle x^2+y^2+4x+4y=0 and a tangent to the circle x^2+y^2=1 , then a and b are

Show that the line 3x+4y +20=0 touches the circle x^(2) + y^(2) =16 and find the point of contact

Prove that the circle x^(2)+y^(2)+2x+2y+1=0 and circle x^(2)+y^(2)-4x-6y-3=0 touch each other.

The value of k so that x+3y+k=0 touches the circle x^(2)+y^(2)+6x+2y=0 is

If the circle x^(2)+y^(2)+2ax=0, a in R touches the parabola y^(2)=4x , them

Show that the line 5x + 12y - 4 = 0 touches the circle x^(2)+ y^(2) -6x + 4y + 12 = 0

The line ax+by+by+c=0 is normal to the circle x^(2)+y^(2)+2gx+2fy+d=0, if

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.