Home
Class 12
MATHS
Integration Lecture 10...

Integration Lecture 10

Promotional Banner

Similar Questions

Explore conceptually related problems

Integration is the :

Using the concept of integration evaluate an area by definite integral

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1)) , then the value of int_(0)^(pi)(dx)/((sqrt(10)-cosx)^3) is

Integrate: 1/x^2-a^2 dx. Integrate: 1/a^2-x^2 dx . Integration of : 1/x^2-a^2 dx. Integration of : 1/a^2-x^2 dx . Integration most important questions.

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then