Home
Class 12
MATHS
Lim(n rarr oo)((1)/(2)+(1)/(4)+(1)/(8) ....

`Lim_(n rarr oo)((1)/(2)+(1)/(4)+(1)/(8) ...+(1)/(2^(n)))=
` (1) `0`
(2) 1
(3) `1/2`
(4)`oo`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(x rarr oo)(1+(1)/(2)+(1)/(4)+...+(1)/(2^(x)))=

lim_(n rarr oo)(1)/(2)+(1)/(2^(2))+(1)/(2^(3))+...+(1)/(2^(n)) equals (a) 2 (b) -1 (c) 1 (d) 3

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lim_(n rarr oo)3^(1/n) equals

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

1/(2!)-1/(3!)+1/(4!) .....oo =

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]