Home
Class 12
MATHS
The minimum value of f(x)=a^(a^(*))+a^(1...

The minimum value of `f(x)=a^(a^(*))+a^(1-a^(x)),` where a,`x in R` and

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the minimum value of f(x)=x^x .

The minimum value of 3^(x)+3^(1-x), x in R

Find the minimum value of f(x) =8^(x) +8^(-x) -4(4^(x)+4^(-x)) , AA x in R

Minimum value of of f (x)=2x^(2)-4x+5is

The minimum value of 4^(x)+4^(2-x),x in R is

Find the minimum value of f(x)= pi^2/(16 cot^-1 (-x)) - cot^-1 x

Write the minimum value of f(x)=x+1/x ,\ \ x >0

Find the minimum value of f(x)=|x+2|+|x-2|+|x|.

Find the maximum and the minimum values of f(x)=sin(sinx) for all x in R , if any.

Minimum value of the function f(x)= (1/x)^(1//x) is: