Home
Class 12
MATHS
Let alpha ne beta, alpha^(2) + 3 = 5 al...

Let `alpha ne beta, alpha^(2) + 3 = 5 alpha and beta^(2) = 5 beta - 3`. The quadratic equation whose roots are `(alpha)/(beta) and (beta)/(alpha)` will be

A

`3x^(2) - 19x + 3= 0`

B

`3x^(2) + 19 x + 3 =0`

C

`3x^(2) - 19x -3 = 0`

D

`3x^(2) -3x + 1 =0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha != beta but, alpha^(2) = 4alpha - 2 and beta^(2) = 4beta - 2 then the quadratic equation with roots (alpha)/(beta) and (beta)/(alpha) is

If alpha!=beta and alpha^(2)=5 alpha-3,beta^(2)=5 beta-3 form the quadratic equation whose roots are (alpha)/(beta),(beta)/(alpha)

If alpha!=beta but alpha^(2)=5 alpha-3,beta^(2)=5 beta-3, then find the equation whose roots are (alpha)/(beta) and (beta)/(alpha)

If alpha1=beta but alpha^(2)=2 alpha-3;beta^(2)=2 beta-3 then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

If alpha!=beta and alpha^(2)=5 alpha-3 and beta^(2)=5 beta-3. find the equation whose roots are alpha/ beta and beta/ alpha .

If alpha + beta = 5 and alpha^(3) + beta ^(3) = 35 , find the quadratic equation whose roots are alpha and beta .

if alpha,beta are roots of x^(2)+4x+3 then find quadratic equation whose roots are 1+(alpha)/(beta) and 1+(beta)/(alpha)

If alpha + beta = 8 and alpha^(2) + beta^(2) = 34 , find the quadratic equation whose roots are alpha and beta .

If alpha+beta=5 and alpha^(3) +beta^(3)=35 , find the quadratic equation whose roots are alpha and beta .