Home
Class 12
MATHS
If a^3 = cosec theta - sin theta and b^3...

If `a^3 = cosec theta - sin theta and b^3 = sec theta - cos theta` then the value of `a^4 b^2 + a^2 b^4` is :

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a cos theta+b sin theta=3 and a sin theta-b cos theta=4 then a^(2)+b^(2) has the value

If "cosec" theta - sin theta =p^3 and sec theta - cos theta = q^3 , then what is the value of tan theta ?

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=

If a cos theta+b sin tan theta=3 and a sin theta-b cos theta=4, then a^(2)+b^(2) has the value

If x=cosec theta-sin theta and y=sec theta-cos theta then prove that x^(2/3)+y^(2/3)=(xy)^(-2/3)

If "cosec" theta - sin theta = m and sec theta - cos theta = n, then what is m^(4/3) n^(2/3) +m^(2/3) n^(4/3) equal to ?

If tantheta - cot theta =a and cos theta - sin theta =b , then value of (a^(2) + 4) (b^(2) -1)^(2) is: