Home
Class 11
MATHS
Prove that the straight line y = mx + c ...

Prove that the straight line y = mx + c touches the parabola `y^(2) = 4a (x+a)` if `c = ma + (a)/(m)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the straight line x+y=1 touches the parabola y=x-x^(2)

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

Find the condition that the straight line y = mx + c touches the hyperbola x^(2) - y^(2) = a^(2) .

Prove that the straight line y=mx+2c sqrt(-m),m in R, always touches the hyperbola xy=c^(2)

Prove that the line x/l+y/m=1 touches the parabola y^2=4a(x+b) , if m^2(l+b)+al^2=0 .

Find the range of c for which the line y=mx+ c touches the parabola y^(2)=8(x+2)