Home
Class 12
MATHS
omega is a complex number , find the val...

`omega` is a complex number , find the value of `| [ 1 , omega , omega^2 ] , [ omega , omega^2 , 1 ] , [ omega^2 , 1 , omega ] |`

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]] =

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

If omega is a complex cube root of unity then the value of the determinant |[1,omega,omega+1] , [omega+1,1,omega] , [omega, omega+1, 1]| is

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-I,1,omega^2],[omega,-omega^2,1]|

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

find the value of (1+omega)(1+omega^(2))(1+omega^(3))(1+omega^(4))

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.