Home
Class 11
MATHS
Prove that |[1,omega,omega^2],[omega,ome...

Prove that `|[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)][(k,1,1),(1,1,1),(1,1,1)]=[(0,0,0),(0,0,0),(0,0,0)] then k=

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]] =

Show that det ([1,omega,omega^(2)omega,omega^(2),1omega,omega^(2),1omega^(2),1,omega])=0 where omega is the non-real cube root of unity =0 where omega is

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.