Home
Class 10
MATHS
If f(x)=x^(3)-(1)/(x^(3)) ,show that f(x...

If `f(x)=x^(3)-(1)/(x^(3))` ,show that `f(x)+f((1)/(x))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(4^(x))/(4^(x)+2) , then show that f(x)+f(1-x)=1

If f(x)=x^(3)-(1)/(x^(3)) , then find the value of f(x)+f(-x) .

If f(x)=log((1-x)/(1+x)) , show that f(a)+f(b)=f((a+b)/(1+ab))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , such that f^3 (x)=f(x^(3))+lambdaf((1)/(x)) , then lambda=

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1.

If f(x)=(x-1)/(x+1),x!=-1, . then show that f(f(x))=-1/x , prove that x!=0 .