Home
Class 11
MATHS
Prove that (1+omega)(1+omega^2)(1+omega^...

Prove that `(1+omega)(1+omega^2)(1+omega^4)(1+omega^8)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^2 be the three cube roots of 1, then show that: (1+omega)(1+omega^2)(1+omega^4)(1+omega^8)=1

If 1, omega, omega^2 be the three cube roots of 1, then show that: (1+omega)(1+omega^2)(1+omega^4)(1+omega^5)=1

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is an imainary cube root of unity,then show that (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

Prove that (1-omega-omega^(2))(1-omega+omega^(2))(1+omega-omega^(2))=8

If 1, omega, omega^(2) are the cube roots of unity, then the value of (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8)) is

If omega is a complex cube root of unity,show that ([1 omega omega^(2)omega omega^(2)1 omega^(2)1 omega]+[omega omega^(2)1 omega^(2)1 omega omega omega^(2)1])[1 omega omega^(2)]=[000]

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0

If 1,omega,omega^(2) are the cube roots of unity (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5))....... to 2n factors