Home
Class 12
MATHS
If A = lim( x -> 0 ) x Sin(1/x ) ; th...

If `A = lim_( x -> 0 ) x Sin(1/x ) ` ; then find the value of A

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( x -> 0 ) Sin( x^(@ ) )/x

If a=lim_(x rarr0)(1-cos x)/(x^(2)),b=lim_(x rarr0)(sin3x)/(x),c=lim_(x rarr oo)(sin x)/(x) then find the value of (2a+b+c)

Evaluate : lim_( x -> 0 ) Sin^m ( x/2 ) / x^m

Evaluate : lim_( x -> 0 )( Sin|x|^3 )/ ( x^3 )

Evaluate : lim_(x -> 0 ) sin^(-1 ) x /x = ---

If L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite,then find the value of aandL.

if L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite then find the value of a&L

if lim_(x rarr0)(sin2x+a sin x)/(x^(3)) be finite,then the value of a is

For a in R^(+) such that lim_(x rarr0)(1-cos ax)/(x^(2))=lim_(x rarr pi)(sin x)/(pi-x) then the value of a is

If lim_(x rarr0)(x^(3))/(sqrt(a+x)(bx-sin x))=1, the the value of constants is