Home
Class 12
MATHS
int(e^(2x-1))/(e^(2x+1))dx=...

`int(e^(2x-1))/(e^(2x+1))dx`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

(iii) int(e^(x)-1)/(1-e^(-x))dx

int(x e^(2x))/((1+2x)^2)dx

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

Evaluate: int(e^(2x))/(1+e^x)dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/(1+e^(2x))dx

inte^(2x)/(4sqrt(e^x+1))dx

Evaluate: inte^(2x)/(1+e^(4x))dx