Home
Class 10
MATHS
If x+y=1 and x^3+y^3=4 , then x^5+y^5=...

If `x+y=1` and `x^3+y^3=4` , then `x^5+y^5=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

If (x+3)/(4)=5 and (y-2)/(3)=6 then x and y are:

If x = 5/4 and y=(-1)/3 , then find the value of (x + y) xx (x-y) .

If x : y = 4 :5 , then (3x + y) : (5x + 3y) =

2x + 5y = 1 , 2x + 3y = 3 .

If (2x + 3,y-1) =(3,5) , then find x and y.

3 x + 5y = 12, 5x + 3y = 4 .