Home
Class 12
MATHS
lim(x->0)log|log(1+x)/x|=(a)0 (b)1 (c)e ...

`lim_(x->0)log|log(1+x)/x|=(a)0 (b)1 (c)e (d)1/e`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(log(1+x)/x) a) 1 b) e a) -1 b) -e

If f(x)=(log)_(x^2)(logx) , then f^(prime)(x) at x=e is (a) 0 (b) 1 (c) 1/e (d) 1/2e

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(x rarr0)(log_(e)(1+x)-x)/(x^(2))=-(1)/(2)

The value of (lim)_(xvec0)(e^(2x)-cosx-ln(1+2x))/(xtanx-sinx)i s 0 (b) 1 (c) 2 (d) 3

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))