Home
Class 12
MATHS
If A= diagonal(3,3,3) then A^4= (1) 12A...

If A= diagonal(3,3,3) then `A^4=`
(1) 12A
(2) 81A
(3) 684A
(4) 27A

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= diagonal(3,3,3) and A^(4)=kA then k=

If A=|(3,3,3),(3,3,3),(3,3,3)| then A^4 is equal to (A) 27A (B) 81A (C) 243A (D) 729A

If A=[[1,2] , [3,4]] then

if A=[[2,-3-4,1]] then (3A^(2)+12A)=?

Consider the function f(x)=(log_(3)x)^(4)+12(log_(3)x)^(2)*(log_(3)((27)/(x))) where x in[1,729], .If M be the ],[ maximum and m be the minimum value of f(x) ,then ],[ (A) M=81, (B) m=0, (C) M=27, (D) m=3

If A= [ (1,3,9,27 ), (3,9,27,1),(9,27,1,3),(27,1,3,9)] then det A= (A) 0 (B) -(80^3).27 (C) (80^3)27 (D) 81^3

If ,A = [(1,2),(-2,4)] ,then -3A= [(-3,-6),(6,-12)]

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

If A=[(3,4),(1,2)] , then the value of |3A| is :