Home
Class 10
MATHS
tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^(2)+a...

`tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^(2)+a+1) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

The solution set of inequality (tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)] is (where [ . ]denotes the G.I.F.)

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) , find ((dy)/(dx)])_(x=-1) 0 (b) 1 (c) 2//pi (d) -1

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))