Home
Class 10
MATHS
Show that : ( 1 - Sin^2theta ) tan^2...

Show that :

`( 1 - Sin^2theta ) tan^2(theta ) = Sin^2( theta) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

tan^2theta-sin^2theta=tan^2theta.sin^2theta

Show that : (1+ tan theta/2)/(1-tan theta/2) = (1+sin theta)/(cos theta) = tan (pi/4 + theta/2)

Prove that (1+ tan^4 theta)/(1+ tan^2 theta) = sec ^2 theta-2 sin^2theta

Cosider the following : 1. tan ^(2) theta - sin ^(2) theta = tan ^(2) theta sin ^(2) theta 2. (cosec theta - sin theta ) (sec theta - cos theta ) (tan theta + cot theta ) =1 Which of the above is/are correct ?

If 3cot theta=4 then show that (1-tan^(2)theta)/(1+tan^(2)theta)=(cos^(2)theta-sin^(2)theta)

if theta = 45^0 then tan^2 theta + 1/(sin^2 theta)

tan^(2)theta-sin^(2)theta-tan^(2)theta sin^(2)theta

Show that (cos^(2)theta - sin^(2)theta)=(2tan theta)/((1- tan^(2)theta)) is not an identity .