Home
Class 12
MATHS
2^x+2^y=2^(x+y) then dy/dx...

`2^x+2^y=2^(x+y) then dy/dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

if 2^x-2^y=2^(x+y find dy/dx at x=y=2

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

If y=x^(x^(2)), then (dy)/(dx) equals

if x^y . y^x =16 then dy/dx at (2,2) is equal to

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =

If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga then (dy)/(dx) is equal to (a) (x^2-y^2)/(x^2+y^2) (b) y/x (c) x/y (d) none of these

If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

y= (a^2+x^2)/(sqrt(a^2-x^2)) then dy/dx=