Home
Class 12
MATHS
lim(n->00)(n!)^(1/n)/n=...

`lim_(n->00)(n!)^(1/n)/n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

The value of lim_(n->oo) n^(1/n)

lim_(ntooo) ((n!)^(1//n))/(n) equals

Prove that lim_(n->oo)(1+1/n)^n=e

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

Evaluate: lim_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)) ,where n in N

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)