Home
Class 12
MATHS
lim(x->oo)x^(1/x)=...

`lim_(x->oo)x^(1/x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

lim_(x->oo)sinx/x =

Evaluate: ("lim")_(x->oo)[x(a^(1/x)-1)], a >1

lim_(x->oo)sin(1/x)/(1/x)

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

lim_(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

lim_(x->oo) xsin(2/x)

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x->oo)(e^(11x)-7x)^(1/(3x))