Home
Class 12
MATHS
int tan^2xdx= (a)tanx+x+c (b)tanx-x+c ...

`int tan^2xdx`=
`(a)tanx+x+c`
`(b)tanx-x+c`
`(c)-tanx+x+c`
`(d)-tanx-x+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2x-1)/(cos2x+1)\ dx= (a) tanx-x+C (b) x+tanx+C (c) x-tanx+C (d) x-cotx+C

int tanx.tan2x.tan3xdx =

int_0^(pi/4) (tanx-x)tan^2xdx

int(dx)/(sin^2xcos^2x) equals(A) tanx+cotx+C (B) tanx-cotx+C (C) tanxcotx+C (D) tanx-cot2x+C

int\ (sin^6x + cos^6x)/(sin^2 x*cos^2x)\ dx (i) tanx+ cotx+3x+C (ii) tanx+ cotx-3x+C (iii) tanx-cotx-3x+C (iv) tanx-cotx+3x+C

lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

Evaluate: int(tanx-x)tan^2x dx

lim_(xrarr0) (tanx-x)/(x^(2)tanx) =?

int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to(A) tanx+cotx+c (B) tanx+cose cx+c (C) -tanx+cotx+c (D) tanx+secx+c

intsec^2x/((2+tanx)(3+tanx))dx