Home
Class 12
MATHS
Show that : lim( x -> 0^(+) ) { (2 |...

Show that :

`lim_( x -> 0^(+) ) { (2 |x|)/x + x + 1 } = 3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : lim_(x rarr1)(2x-1)=1

Show that lim_(x rarr 0^+) (1+x)^(1/x) =e

lim_( x -> 0 ) (sqrt( 1 + x + x^2 + x^3 ) - 1 )/ x

Show that : Lim_(x rarr0)(e^(x)-sin x-1)/(x)=0

lim_(x rarr0^(-)){(|x|)/(x)+x^(2)+3}

Show that lim_(x rarr0+)((2|x|)/(x)+x+1)=3

Evaluate : lim_( x -> 0 )( sqrt( 3 -x ) -1 )/ ( 2-x )

lim_(x->0)(e^(2x)-1)/(3x)

show that lim_(x rarr1)[2x+3]=5

lim_(x rarr0)(2^(x)-3^(x))/(x)