Home
Class 12
MATHS
If e^y= y^x then show that dy/dx= (logy)...

If `e^y= y^x` then show that `dy/dx= (logy)^2/(logy-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

x(dy)/(dx)=y(logy-logx+1)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

Find dy/dx if logy=5x^2