Home
Class 12
MATHS
Solve the following equation sin^(-1)...

Solve the following equation
`sin^(-1)x-cos^(-1)x=pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equations: (i) sin^(8)x - cos^(8)x=1 (ii) sin^(10)x - cot^(8)x=1

Solve the following equations : cos (sin^(-1) x) = 1/2

Solve the following for x sin^(-1)((x)/(2))+cos^(-1)x=(pi)/(6)

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)

Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)=(pi)/2

Solve sin^(-1)x<=cos^(-1)x

If sin^(-1)x-cos^(-1)x=(pi)/(6) then x=

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))