Home
Class 14
MATHS
The value of (4(1)/5-3(1)/(10) "of" 1(1)...

The value of `(4(1)/5-3(1)/(10) "of" 1(1)/7)div(6(1)/3-3(1)/5 "of"1(1)/2)` is:

A

`3/5`

B

`5/9`

C

`5/7`

D

`3/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((4(1)/5 - 3(1)/(10) \text{ of } 1(1)/7) \div (6(1)/3 - 3(1)/5 \text{ of } 1(1)/2)\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert all mixed numbers into improper fractions. - \(4(1)/5 = \frac{4 \times 5 + 1}{5} = \frac{20 + 1}{5} = \frac{21}{5}\) - \(3(1)/(10) = \frac{3 \times 10 + 1}{10} = \frac{30 + 1}{10} = \frac{31}{10}\) - \(1(1)/7 = \frac{1 \times 7 + 1}{7} = \frac{7 + 1}{7} = \frac{8}{7}\) - \(6(1)/3 = \frac{6 \times 3 + 1}{3} = \frac{18 + 1}{3} = \frac{19}{3}\) - \(3(1)/5 = \frac{3 \times 5 + 1}{5} = \frac{15 + 1}{5} = \frac{16}{5}\) - \(1(1)/2 = \frac{1 \times 2 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}\) ### Step 2: Substitute Back into the Expression Now we substitute these values back into the expression: \[ \left(\frac{21}{5} - \frac{31}{10} \text{ of } \frac{8}{7}\right) \div \left(\frac{19}{3} - \frac{16}{5} \text{ of } \frac{3}{2}\right) \] ### Step 3: Calculate "of" (Multiplication) Next, we calculate the multiplication parts: - For \(\frac{31}{10} \text{ of } \frac{8}{7}\): \[ \frac{31}{10} \times \frac{8}{7} = \frac{31 \times 8}{10 \times 7} = \frac{248}{70} = \frac{124}{35} \] - For \(\frac{16}{5} \text{ of } \frac{3}{2}\): \[ \frac{16}{5} \times \frac{3}{2} = \frac{16 \times 3}{5 \times 2} = \frac{48}{10} = \frac{24}{5} \] ### Step 4: Substitute Back into the Expression Now substitute these results back: \[ \left(\frac{21}{5} - \frac{124}{35}\right) \div \left(\frac{19}{3} - \frac{24}{5}\right) \] ### Step 5: Find Common Denominators and Simplify Now we need to simplify both parts of the expression. For \(\frac{21}{5} - \frac{124}{35}\): - The common denominator is \(35\): \[ \frac{21 \times 7}{5 \times 7} - \frac{124}{35} = \frac{147}{35} - \frac{124}{35} = \frac{23}{35} \] For \(\frac{19}{3} - \frac{24}{5}\): - The common denominator is \(15\): \[ \frac{19 \times 5}{3 \times 5} - \frac{24 \times 3}{5 \times 3} = \frac{95}{15} - \frac{72}{15} = \frac{23}{15} \] ### Step 6: Rewrite the Expression Now the expression becomes: \[ \frac{23}{35} \div \frac{23}{15} \] ### Step 7: Change Division to Multiplication Change the division into multiplication by taking the reciprocal: \[ \frac{23}{35} \times \frac{15}{23} \] ### Step 8: Cancel Common Terms Now we can cancel \(23\): \[ \frac{15}{35} = \frac{3}{7} \] ### Final Answer Thus, the value of the expression is: \[ \frac{3}{7} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of 6((1)/(5)) - [4((1)/(2)) - {""((1)/(6)) - (""((3)/(5)) + ""((3)/(10)) - ""((7)/(15)))}] is

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of 15(7)/(10)+3(1)/(5) of [5(1)/(8)-(2(1)/(4)+(5)/(3)xx(15)/(14)div(10)/(9) of (3)/(14))] is :

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of (1/3 + [4 (3)/(4) - (3 (1)/(6)-2 (1)/(3))])/((1/5 of 1/5 div 1/5) div (1/5 div 1/5 xx 1/5)) lies between: