Home
Class 14
MATHS
If x:y:z=1:2:3, then what is the value o...

If `x:y:z=1:2:3`, then what is the value of `((3x^2-2y^2+4z^2)/(x^2+2y^2+z^2))`?

A

`31/21`

B

`31/16`

C

`31/18`

D

`31/19`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio \( x:y:z = 1:2:3 \). This means we can express \( x \), \( y \), and \( z \) in terms of a common variable \( k \): 1. **Assign values based on the ratio**: \[ x = k, \quad y = 2k, \quad z = 3k \] 2. **Substitute these values into the expression**: We need to evaluate: \[ \frac{3x^2 - 2y^2 + 4z^2}{x^2 + 2y^2 + z^2} \] **Calculate the numerator**: \[ 3x^2 = 3(k^2) = 3k^2 \] \[ 2y^2 = 2(2k)^2 = 2 \cdot 4k^2 = 8k^2 \] \[ 4z^2 = 4(3k)^2 = 4 \cdot 9k^2 = 36k^2 \] Now, substituting these into the numerator: \[ 3x^2 - 2y^2 + 4z^2 = 3k^2 - 8k^2 + 36k^2 = (3 - 8 + 36)k^2 = 31k^2 \] **Calculate the denominator**: \[ x^2 = k^2 \] \[ 2y^2 = 2(2k)^2 = 8k^2 \] \[ z^2 = (3k)^2 = 9k^2 \] Now, substituting these into the denominator: \[ x^2 + 2y^2 + z^2 = k^2 + 8k^2 + 9k^2 = (1 + 8 + 9)k^2 = 18k^2 \] 3. **Combine the results**: Now we can substitute the numerator and denominator back into the expression: \[ \frac{31k^2}{18k^2} \] 4. **Simplify**: The \( k^2 \) terms cancel out: \[ \frac{31}{18} \] Thus, the final answer is: \[ \frac{31}{18} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x:y:z=2:3:4 , what is the value of ((x^(2)+2y^(2)+z^(2))/(3x^(2)-2y^(2)+4z^(2))) ?

If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

If x+y+z=0, then the value of (x^2y^2+y^2z^2+z^2x^2)/(x^4+y^4+z^4) is :

If x : y : z = 3 : 4 : 9, then what will be the value of (2x + 3y + z) : (2z + x – 3y)?

If x = 1, y = 2, z = 5 , then find the value of 3x – 2y + 4z.

If 3x-4y+z=7; 2x-z+3y=19 ; x+2y+2z=24 , then what is the value of z ? (a) 4 (b) 5 (c) 6 (d) 8