Home
Class 14
MATHS
The value of 120 -: [2/3 xx (1- 2/5) xx5...

The value of `120 -: [2/3 xx (1- 2/5) xx5] + [9/8 " of " 4/3 -: 3/4 " of " 2/3] +5/3` is :

A

62

B

65

C

63

D

60

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 120 -: \left[\frac{2}{3} \times \left(1 - \frac{2}{5}\right) \times 5\right] + \left[\frac{9}{8} \text{ of } \frac{4}{3} -: \frac{3}{4} \text{ of } \frac{2}{3}\right] + \frac{5}{3} \), we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Simplify the first bracket First, we need to calculate \( 1 - \frac{2}{5} \): \[ 1 - \frac{2}{5} = \frac{5}{5} - \frac{2}{5} = \frac{3}{5} \] Now substitute this back into the first bracket: \[ \frac{2}{3} \times \left(\frac{3}{5}\right) \times 5 \] ### Step 2: Calculate the first bracket Now we can simplify: \[ \frac{2}{3} \times \frac{3}{5} \times 5 = \frac{2}{3} \times 3 = 2 \] ### Step 3: Substitute back into the main expression Now substitute this value back into the main expression: \[ 120 -: 2 + \left[\frac{9}{8} \text{ of } \frac{4}{3} -: \frac{3}{4} \text{ of } \frac{2}{3}\right] + \frac{5}{3} \] ### Step 4: Calculate the second bracket First, calculate \( \frac{9}{8} \text{ of } \frac{4}{3} \): \[ \frac{9}{8} \times \frac{4}{3} = \frac{36}{24} = \frac{3}{2} \] Next, calculate \( \frac{3}{4} \text{ of } \frac{2}{3} \): \[ \frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2} \] Now substitute these values back into the second bracket: \[ \frac{3}{2} -: \frac{1}{2} = \frac{3}{2} \div \frac{1}{2} = \frac{3}{2} \times 2 = 3 \] ### Step 5: Substitute back into the main expression Now substitute this value back into the main expression: \[ 120 -: 2 + 3 + \frac{5}{3} \] ### Step 6: Calculate \( 120 -: 2 \) \[ 120 \div 2 = 60 \] ### Step 7: Combine all parts Now we have: \[ 60 + 3 + \frac{5}{3} \] Convert \( 3 \) to a fraction with a denominator of \( 3 \): \[ 3 = \frac{9}{3} \] Now combine: \[ 60 + \frac{9}{3} + \frac{5}{3} = 60 + \frac{14}{3} \] ### Step 8: Convert \( 60 \) to a fraction Convert \( 60 \) to a fraction with a denominator of \( 3 \): \[ 60 = \frac{180}{3} \] Now combine: \[ \frac{180}{3} + \frac{14}{3} = \frac{194}{3} \] ### Final Answer Thus, the final value of the expression is: \[ \frac{194}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2 7/8 div (3 5/6 div 2/7 of 2 1/3) xx [(2 6/7 of 4 1/5 div 2/3)xx5/9] is : / 2 7/8 div (3 5/6 div 2/7 of 2 1/3) xx [(2 6/7 of 4 1/5 div 2/3)xx5/9] का मान ज्ञात करें |

The value of 3/4 xx 2 2/3 div 5/9 of 1 1/5+ 2/23 xx 3 5/6 div 2/7 of 2 1/3 is :- 3/4 xx 2 2/3 div 5/9 of 1 1/5+ 2/23 xx 3 5/6 div 2/7 of 2 1/3 का मान ज्ञात करें ।

The value of 8/9 of (5 1/4 div 2 1/3 of 4) div (8 div 2/3 of 4/5) of (8xx 2/3 div 4/5) is 8/9 of (5 1/4 div 2 1/3 of 4) div (8 div 2/3 of 4/5) of (8xx 2/3 div 4/5) का मान ज्ञात करें |

The value of 9/15 of (2/3 div 2/3 of 3/2) div (3/4xx3/4 div 3/4 of 4/3) of (5/4 div 5/2 xx 2/5 of 4/5) is :- 9/15 of (2/3 div 2/3 of 3/2) div (3/4xx3/4 div 3/4 of 4/3) of (5/4 div 5/2 xx 2/5 of 4/5) का मान ज्ञात करें |

The value of (9)/(15) " of " ((2)/(3) // (2)/(3) " of " (3)/(2)) ÷ ((3)/(4) xx (3)/(4) ÷ (3)/(4) " of " (4)/(3)) " of " ((5)/(4) ÷ (5)/(2) xx (2)/(5) " of " (4)/(5)) is :

The value of (9)/(15) " of " ((2)/(3) // (2)/(3) " of " (3)/(2)) ÷ ((3)/(4) xx (3)/(4) ÷ (3)/(4) " of " (4)/(3)) " of " ((5)/(4) ÷ (5)/(2) xx (2)/(5) " of " (4)/(5)) is :

The value of (5 1/4 div 3/7 of 1/2)xx(5 1/4xx 3/7 div 1/2) div (5 1/4 div 3/7 xx 1/2) is :- (5 1/4 div 3/7 of 1/2)xx(5 1/4xx 3/7 div 1/2) div (5 1/4 div 3/7 xx 1/2) का मान है :