Home
Class 14
MATHS
A man bought two articles for Rs 3.000 e...

A man bought two articles for Rs 3.000 each. He sold one article at 10% profit and the other at 5% loss. What is the total profit or loss percentage?

A

Profit 10%

B

Profit 2.5%

C

No profit no loss

D

Loss 7.5%

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will calculate the selling price of each article and then determine the total profit or loss percentage. ### Step 1: Calculate the Cost Price (CP) of each article The man bought two articles for Rs 3,000 each. Therefore, the cost price (CP) of each article is: \[ CP_1 = 3000 \quad \text{and} \quad CP_2 = 3000 \] ### Step 2: Calculate the Selling Price (SP) of the first article The first article is sold at a 10% profit. To find the selling price (SP) of the first article: \[ SP_1 = CP_1 + (10\% \text{ of } CP_1) \] \[ SP_1 = 3000 + \left(\frac{10}{100} \times 3000\right) \] \[ SP_1 = 3000 + 300 = 3300 \] ### Step 3: Calculate the Selling Price (SP) of the second article The second article is sold at a 5% loss. To find the selling price (SP) of the second article: \[ SP_2 = CP_2 - (5\% \text{ of } CP_2) \] \[ SP_2 = 3000 - \left(\frac{5}{100} \times 3000\right) \] \[ SP_2 = 3000 - 150 = 2850 \] ### Step 4: Calculate the Total Selling Price (SP) Now, we can calculate the total selling price of both articles: \[ \text{Total SP} = SP_1 + SP_2 \] \[ \text{Total SP} = 3300 + 2850 = 6150 \] ### Step 5: Calculate the Total Cost Price (CP) The total cost price of both articles is: \[ \text{Total CP} = CP_1 + CP_2 \] \[ \text{Total CP} = 3000 + 3000 = 6000 \] ### Step 6: Calculate the Total Profit Now, we can find the total profit: \[ \text{Total Profit} = \text{Total SP} - \text{Total CP} \] \[ \text{Total Profit} = 6150 - 6000 = 150 \] ### Step 7: Calculate the Profit Percentage Finally, we can calculate the profit percentage: \[ \text{Profit Percentage} = \left(\frac{\text{Total Profit}}{\text{Total CP}}\right) \times 100 \] \[ \text{Profit Percentage} = \left(\frac{150}{6000}\right) \times 100 \] \[ \text{Profit Percentage} = 2.5\% \] ### Conclusion The total profit percentage is **2.5%**.
Promotional Banner

Similar Questions

Explore conceptually related problems

A man bought 2 articles for Rs 2650 each. He sold one article at 10% profit and another at 5% profit. The total profit percentage he earned is: एक व्यक्ति ने दो वस्तुओं में से प्रत्येक को 2650 रुपये में ख़रीदा | उसने एक वस्तु को 10% लाभ पर तथा दूसरी को 5% लाभ पर बेच दिया | उसके द्वारा प्राप्त कुल लाभ का प्रतिशत ज्ञात करें |

A man bought 2 articles for Rs3050 each. He sold one article at 10% loss and another at 20% profit. The total profit/loss percentage he earned is: एक व्यक्ति ने दो वस्तुओं में से प्रत्येक को 3050 रुपये में ख़रीदा | उसने एक वस्तु 10% की हानि पर तथा दूसरी वस्तु 20% लाभ पर बेच दी | उसके द्वारा प्राप्त कुल लाभ / हानि का प्रतिशत ज्ञात करें |

Ajay sold two motorbikes for Rs 40,000 each. He sold one at 20% profit and the other at 20% loss. Find the profit or loss percentage in the whole transaction.

A man bought three articles for Rs 3,000 each. He sold the articles respectively at 10% profit, 5% profit and 15% loss. The total percentage profit/loss he earned is: एक व्यक्ति ने तीन वस्तुओं में से प्रत्येक को 3000 रुपये में ख़रीदा | उसने इन वस्तुओं को क्रमशः 10% लाभ, 5% लाभ और 15% हानि पर बेचा | उसके द्वारा प्राप्त कुल लाभ/हानि ज्ञात करें |

The cost price of two articles is the same. One is sold at 10% profit and the other is sold at 10% loss. What is the effective profit/loss percentage ?