Home
Class 12
MATHS
Find lim(x->oo) (1+1/x)^x =e...

Find `lim_(x->oo) (1+1/x)^x =e`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)sin(1/x)/(1/x)

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

lim_(x->oo)(1-x+x.e^(1/n))^n

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x

lim_(x->e) (lnx-1)/(x-e)

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

lim_(xrarr oo) (1+(2)/(x))^x equals

lim_(xto oo)(x/(1+x))^(x) is